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A knotoid (V.Turaev) is a knot diagram with two ends.
The ends can be in different regions of the diagram.
We study knotoids up to Reidemeister moves.
The moves do not move arcs across the ends of

the diagrams.
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FIGURE 1. Knotoid diagrams

e /)
PEDS

R e XK

(a) Qj=1,2,3- moves

(b) Forbidden knotoid moves




2.1. An Interpretation of Classical Knotoids in 3-Dimensional Space. Let K be a
knotoid diagram in R2. The plane of the diagram is identified with R x {0} C R3. K can be
embedded into R? by pushing the overpasses of the diagram into the upper half-space and
the underpasses into the lower half-space in the vertical direction. The tail and the head of
the diagram are attached to the two lines, t XxRR and hxR that pass through the tail and the
head, respectively and is perpendicular to the plane of the diagram. Moving the endpoints
of K along these special lines gives rise to embedded open oriented curves in R? with two
endpoints of each on these lines.
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FIGURE 3. Curves in R? obtained by the knotoid diagram in Figure 1(c)
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An embeded arc in R*3 becomes a knotoid on
taking a generic projection to a plane.

Restricting isotopies of the arc to endpoint motions on
the parallel lines (perpendicular to the plane) and
otheswise in the complement of the two lines, preserves
the knotoid type of the projection.







Bowline as knotoid and an “underclosure’ of the
knotoid.




Studies of global and local entanglements of individual protein
chains using planar and surface knotoids
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Parity is
a
Fundamental
Property
of
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) The detour move

Recall virtual knot

Q va m theory.

We can have virtual

E o >< knotoids

AND
o % we consider the
3 virtual closure
BB\ of knotoids as method
/3*\‘ \A/ to study them.

(b) Virtual €;_; 2 3-moves and a partial virtual move




Virtual Knot Theory
studies stabilized knots in thickened surfaces.
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Figure 4: Surfaces and Virtuals
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Generalized Reidemeister Moves for
Virtual Knots and Links
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VKT
=Virtual Knot Theory
=Virtual Diagrams up to Virtual Equivalence
= Oriented Gauss Codes up to Reidemeister Moves

= Links in Thickened Surfaces up to |-handle stabilization




v: Knotoids in S — Virtual knots of genus < 1.

FIGURE 13. The virtual closure of a knotoid diagram
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Virtual Closure (K)

Figure 14: Knotoid and Its Virtual Closure

The virtual closure of a knotoid is supported
in genus one (add a handle to the 2-sphere).




Two Distinct Knotoids with the same Virtual Closure




The virtual closure map is not surjective.

(T, K)

The virtual knot represented on the torus in the
figure below is NOT in the image of the virtual
closure map.




1.2. The virtual closure map. Let K be a knotoid diagram in §%. The virtual
knot diagram v(K) that is the virtual closure of K, lies in a torus when a handle
is added to S? in a way that the connection arc o goes around the handle. The
virtual knot diagram (K can be illustrated in an abstract way, as in Figure 1,
where in the picture o denotes the connection arc going through the handle. Let
a], [b] be the generators of H; (7). By the construction, the surface bracket states
of the representation of 7(K) in 7" consist of isotopy classes of simple closed curves
that are homologous to the curves [a| + n[b] and m[b], n,m € Z, for some choice of
orientation assigned to state curves.

F1GURE 1. The virtual closure of a knotoid diagram in a torus

Lemma 1. Let K be a wvirtual knot diagram in the class of a virtual knot k of
genus 1 that is in the image of the virtual closure map U for knotoids. Let (T?,k)
be a representation of k in T?. If the nontrivial isotopy classes of state curves of
(T2, k) are only of the form (for some choice of orientation) k[a] and m[b] for some
k,m € Z — {0}, then |k| = |m| = 1.




Proof. The isotopy classes of the state curves are taken up to orientation preserving
self-homeomorphisms of 72 that are not isotopic to identity map. As we mentioned
above, at least one of the torus representations of £ has a state curve of the form
la]+n[b] when the state curves are oriented accordingly. And Kuperberg’s theorem ||
tells that the minimal representations of virtual knots are unique. These two facts
imply that there exists an orientation preserving self-homeomorphism f of 72 such

that f.([a]+n[b]) = k[a] or f.([a]+n[b]) = m[b] where f, is the induced isomorphism
on H{(T?,7Z). The mapping class group of 7% is isomorphic to the special linear
group of 2 x 2 integral matrices, SL(2,Z), then the map f can be represented by a

matrix M = (R S) in SL(2,7Z). We have,

i U
R S 1N rk
T U n /] \O0
This is possible only if R +nS = k and T + nU = 0. Equivalently, n = —T/U

and R+ (—T/U)S =1/U = k. We have |U| = |k| = 1 since k € Z — {0. The second
part of the proof for showing that |m| = 1, follows similarly. ]




(T, K)

The states contradict the needs of the Lemma if the
knot were in the image of the closure map.




Bracket Polynomial for Knotoids
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Bracket Calculation
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Conjecture: The bracket polynomial detects the
unknotted knotoid.

Discussion: This conjecture includes the well-known
conjecture that the Jones polynomial detects the unknot.

Note that the corresponding conjecture for virtual knots
is false. There are non-trivial non-classical virtual knots
with unit Jones polynomial. And there are examples of such
virtual knots of genus one. This means that we conjecture
that such virtual knots are not in the image of the closure
map from knotoids.




Virtualized Trefoil Has Unit Jones Polynomial

We can prove that this virtual knot is not in the
image of the closure map by examining isotopy
classes of state loops on the torus.




Bracket Polynomial is Unchanged
when smoothing flanking virtuals.
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Figure 7. Switch and Virtualize
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<Virt(K)> = <Switch(K)>

(b and
1Q(Virt(K)) = IQ(K).

K

| here exist infinitely many non-trivial
Virt(K) with unit Jones polynomial.




Nevertheless, we still hold to the

Conjecture: The bracket polynomial detects the
unknotted knotoid.




Affine Index Polynomial for Knotoids

The Affine Index Polynomial is defined by knotoids
both via virtual closure AND on its own grounds.

This invariant depends upon labeling a flat diagram with
integers using the convention below.

b+1 a—1

w+ =2a - b-| w- =b -at+| = -w+




Affine Index Polynomial

Let ¢ be a classical crossing of K. We define two numbers at ¢ resulting by the labeling
of F(K). These numbers that are denoted by w, (c) and w_(c), are defined as follows.

wi(c)=a—(b+1)

w_(c)=b— (a—1),
where a and b are the labels for the left and the right incoming arcs at the corresponding
flat crossing to c, respectively. the numbers w. (c) and w_(c) are called positive and negative

weights of ¢, respectively.
The weight of c is defined as

sl = w,(c), if the sign of ¢ is a positive crossing
w_(c), if the sign of ¢ is a negative crossing.

Definition 12. The affine index polynomial of a virtual or classical knotoid diagram K is
defined by the following equation.

Px(t) = 3 sgn(c)(t*<© — 1),
where the sum is taken over all classical crossings of a diagram of K and sgn(c) is the sign
of c.

(related versions due to Henrich, Cheng, Dye for
virtual knots and links)




a a—1 a a+1

wi(z) = w-(z) =0 w4 (y) = w-(y) =0







Theorem 4.10. The affine index polynomial of a knotoid K in S? is symmetric with respect
to t <» t~1. Therefore, Px(t) = Pg(t), where K denotes the inverse of K.

4.5. The height of a knotoid and the affine index polynomial. The height (or the
complexity with respect to Turaev’s terminology in [37]) of a knotoid diagram in S? is
the minimum number of crossings that a shortcut creates during the underpass closure.
The height of a knotoid in S?, K is defined as the minimum of the heights, taken over
all equivalent classical knotoid diagrams to K and is denoted by A(K). The height is an
invariant of knotoids in S? [37]. A knotoid in S? is of knot-type if and only if its height is
zero or equivalently a knotoid in $2 has nonzero height if and only it is a proper knotoid [37].

It is often hard to compute the height with an attempt of direct computation, for we
should take into account all the equivalent knotoid diagrams. The affine index polynomial
provides the following estimation for the height.

Theorem 4.12. Let K be a knotoid in S%.The height of K is greater than or equal to the
mazximum degree of the affine index polynomial of K.
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FIGURE 35. Flat spiral knotoid diagrams

These give examples of heights n for any natural
number n.




Arrow Polynomial for Knotoids
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Long State Components
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Cusp Rules for Arrow
Polynomial







Example 5.4. The reader can easily see that the height of the knotoid diagram K given in
Figure 1(f) is equal to 2. We want to find out if there exists an equivalent knotoid diagram
to K with less height. The affine index polynomial of K is Px(t) = 2t +2t~! — 4, as can be
verified by Figure 41. The arrow polynomial of K is A[K] = (—A™% +2A71 — A3 — A7) +
2(A — A®)A;. The affine index polynomial and the arrow polynomial both assure that the
height of K is at least 1. Therefore we have, 1 < h(K) < 2. This is a case where our tools
discussed in this paper can not give an exact estimation for the height.

Wy w_
A 0 0
B -1
G| =1 ] 1
D 1 = |
El -111

FIGURE 41. The weight chart of K

Is the height of this knotoid | or 2?




Next: Topological Invariants of Folded Protein Knotoids

(Expand folding vertex and evaluate a convenient invariant
of knotoids. e.g. knotoid bracket.)




QUESTIONS

(1) Determination of the kernel of the virtual closure map: We have nontrivial virtual
knotoids closing virtually to the trivial knot. However nontrivial knot-type knotoids
close to nontrivial knots. Is there a proper knotoid (a classical knotoid with nonzero
height) whose virtual closure is the trivial knot?

(2) Determination of the image of the virtual closure map: We show that the virtual
closure map is not a surjective map. The proof will appear in [11]. Here we ask the
following question. How to determine if a given virtual knot is in the image of v ¢

(3) A generalization of the first question: Is there a proper knotoid whose virtual closure
is a classical knot or do proper knotoids always close (virtually) to a virtual knot of
genus 17

(4) Conjecture: The Jones polynomial for knotoids in S? detects the triviality of classical
knotoids. Let K be a virtual knot with trivial Jones polynomial. If the conjecture
holds, we will be able to conclude that the virtual closure of any proper knotoid is
nontrivial, by using the equality V (K) = V(v(K)), where V denotes the Jones poly-
nomial.




(5)

(6)

We want to know more about the height of knotoids and its relations with both the
affine index polynomial and the arrow polynomial. We have given examples where
the estimation of the arrow polynomial is more powerful than the affine index polyno-
mial in detecting the height of a given classical knotoid. Does there exist an example
for which the index polynomial is superior to the arrow polynomial in height deter-
mination?

Khovanov homology can be extended to an invariant of knotoids. There is a di-
rect analog of Khovanov homology for classical knotoids. The analogs of Khovanov
homology for virtual knots [7,30] can be applied to virtual knotoids. It is worth
investigating Khovanov homology for knotoids. We can ask the following question:
Does Khovanov homology for knotoids detect the trivial knotoid? Note that Kho-
vanov homology detects the unknot [22].

Let C be an open oriented curve in 3-dimensional space. The set of knotoids associ-
ated to C that are obtained by projecting the curve to planes deserves investigation
since the physical properties of the curve can be studied in this way.
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