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MNPEANCJIOBHE

Ienpro yueGHOTO MOCOOHS SIBISETCS Pa3BUTHE Y CTYICHTOB CTap-
IIMX KypCcoB, 00ydaromuxcs 1no cnenraibHocT «llpuknagnas Mmarema-
THKa», HaBBIKOB pabOTHl C OPUTMHANBHOW HAy4YHOH IUTepaTypoi Ha
AHTJIMHCKOM SI3bIKE, @ TAK)KE TOYHOTO TIOHUMAaHUs ¥ TPaMOTHOTO Iepe-
BOJIa TEKCTOB, BEJCHUS Oecelbl MO OCHOBHBIM TE€MaM, 3aTPOHYTHIM
B mocoOun. 3aJaHus MO MEPEeBOLy C PYCCKOTO S3bIKa Ha AHTIMHUCKUI
HalnpapJIeHbl Ha NOBTOPEHHE M 3aKPEIUICHHE TEPMUHOJIOTHH MO CIICIH-
AIIBHOCTH, Ha UCTIOJI30BaHUE HEOOXOIMMOT0 TPaMMaTHYECKOTO arapa-
Ta. 3aJjaHKs Ha TIPOYTEHHE MaTeMaTH4ecKuxX (POpMyI MO3BOJIAT CTYECH-
TaM TMOJYYUTh JOCTATOYHBI HABBIK  HM3JIOKEHUS  MaTepHana,
COZIepKaIero MaTeMaTHYeCKU anmapaT, Ha aHTJTMHCKOM si3bIke. ['pam-
MaTUYECKHEe YIPaKHEHHs HaIlpaBJICHbl HA TIOBTOPEHHE HAHOOJIEe CIIOXK-
HBIX KOHCTPYKLHI aHTIMHACKOTO S3bIKA.

Branenue TepMHHONOTHEW TO M3y4aeMOH CHELUAIbHOCTH U SI3bI-
KOBBIMH 00OpPOTaMH aHIJIMICKOTO SI3bIKA, HABBIKM IIOHUMAHUS U Iepe-
BOaa OpPII'I/IHEUIbHOfI JIMTECPATYypPhI HO3BOJIAT CTYACHTaM JIETYE€ OPUCHTU-
poBaThCsl B TOTOKE MyONMKAIMA MO CIEHUaIbHOCTH Ha aHTIIUICKOM
S3BIKE, OTPENEIATh CTEIeHb BXKHOCTH IT0JydaeMoil nH(popMaun A
cOOCTBEHHOH c(epbl AeaTeNbHOCTH, TPUHUMATh ydacThe B 0OCYXIe-
HHUH IPO(ECCHOHATBHBIX BOPOCOB € 3apyOeKHBIMHU KOJIJIETAMH.



Unit 1

Texts:

. Pure and Applied Mathematics

. Why is the World Mathematical?

. Mathematics and Physics

. Revolution in Mathematics
“Queen of Sciences”
Experimental Mathematics

mTmoO AW

Preliminary exercises

I. Translate the following words and determine what part of
speech they are. Explain your opinion. Find them in the text:
National, international, nation, nationality, nationalism, nationalist, na-
tionally;
discuss, discusser, discussible, discussion;
approximately, approximation, approximate;
solve, solvent, solvable, solver;
application, applicator, applicant, apply, appliancy, applicability, ap-
plied, appliance;
extremely, extreme, extremeness, extremism, extremist, extremity;
intractable, tract, tractable, tractate;
essential, essence, essentially, essay;
heavily, heavy, heaviness;
mathematicians, mathematics, mathematical, math;
probabilists, probable, probability;
correctly, correct, correction, incorrect, incorrectly, correctness;
joining, join, joint, jointless, jointly, joined;
partition, part, particle, partial, partner, partly;
loft, loftiness, loftily, lofty.

Il. Read Text A and find equivalent phrases in the right-hand
column. Find them in the text:
1) cTporocTs u J0Ka3aTENbCTBA a) solvable problem



2) HavanIbHBIC ¥ TPAaHUYHBIC 3HA-
YEHUs

3) TeopeTudecKas M MPUKJIATHAS
MaTeMaTuKa OTHASIIOTCS APYT
OT Zipyra

4) riry0oKoe IOHMMaHKeE MpeMeTa

5) UHAYKTUBHBIN METOL

6) pazpemmMas 3aaada

7) IOJTHOCTBIO MOTPY3UTHCS B TEMY
8) HeoOXoIMMEBIE KadecTBa

9) 00beIMHEHHBIC YCUITHS JIFOICH
10) HerpaMoTHBIH uy1ak

b) sloppy crackpot

¢) to immerse oneself complete-
ly in the subject

d) joining of hands of people

e) initial and boundary values

f) living and breathing the sub-
ject

g) pure and applied mathematics
are drifting apart

h) inductive method

i) rigor and proofs

j) requisite qualities

III. Memorize the following basic vocabulary and terminology to

Text A:

pure mathematics — 4ncras MaTeMaTuka

applied mathematics — mpukiagHas MaTeMaTHKa

boundary value — rpaHuyHOe 3HaYeHUE

boundary value problem — xpaeBas 3amaua

approximate solution — npubImKEHHOE pelIeHUE

exact problem — crporas 3amada

solvable problem — pa3pemmmas 3amava

intractable problem — TpyaHopa3spemurMas 3a1ada

initial value problem — 3agada Komm, 3amada ¢ Ha9aabHBIMH YCIIOBH-
AMH

recognize the need — mpu3HaBaTh HEOOXOJUMOCTh

Text A
Pure and Applied Mathematics

Toward the end of the recent International Congress of Mathematicians
in Madrid, there was a discussion about whether pure and applied
mathematics are drifting apart. The majority of the audience was pure
mathematicians. So perhaps it would be helpful to ask, what is applied
mathematics?

A very good answer was provided by Kurt Friedrichs, who distin-
guished himself in both pure and applied mathematics, “Applied math-
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ematics consists in solving exact problems approximately and approxi-
mate problems exactly.” Initial and boundary value problems associated
with the Navier-Stokes equations are an example of problems that are
extremely difficult to solve exactly and where approximate solutions
are looked for. Hence computing is an important part of applied math-
ematics. The Bhatnagar Gross-Krook equation in kinetic theory and
plasma physics is an example of a solvable problem that approximates
an intractable one.

Some mathematicians believe that pure mathematics is a branch
of applied mathematics. Some of the greatest mathematicians of the
past — Newton, Euler, Lagrange, Gauss, and Riemann — and more re-
cently Hilbert, Weyl, Wiener, von Neumann, and Kolmogorov did both
pure and applied mathematics.

There was the opinion that proofs are essential in pure math, but
they are essential in applied math too, except that the path one takes is
rather different. Applied math relies heavily on the inductive method,
as opposed to the deductive method preferred by pure mathematicians.
In pure mathematics the emphasis is on rigor. However, ideas are far
more important. Ideas come from intuition, of course, which in turn
comes from living and breathing the subject. Some of the scientists are
quite right in insisting that even applied mathematicians need basic
training in mathematics. One must also immerse oneself completely in
the subject to which one wants to apply mathematics.

It is by gaining a thorough understanding of the problems arising in
the subject one develops a feeling for it, and with it, intuition. In ap-
plied mathematics the emphasis on rigor and proof must come at the
appropriate stage. Let us consider an example. Feynman had great in-
tuition but didn’t care much for rigor or proofs. He says in one of his
autobiographical writings that once he used to talk to William Feller
and Mark Kac, the famous probabilists. It is a happy circumstance, for
science in general and mathematics in particular, that Feller and Kac
didn’t dismiss Feynman as a sloppy crackpot but instead patiently lis-
tened to him. Thus the great Feynman-Kac formula was born. The mor-
al, I think, is that pure mathematicians, while insisting correctly on ri-
gor and proofs, must be patient and show some respect toward intuition
born out of a deep knowledge of a subject. Attitudes like “Applied
mathematics is bad mathematics” are shortsighted. For their part, ap-
plied mathematicians, while using intuition as their guide, must recog-
nize the need for and the importance of proofs. On the other hand, it is



rare that a single individual embodies all the requisite qualities to a high
degree. So often what is needed is a joining of hands of people with
disparate abilities, strengths, and points of view rather than a separation
or drifting apart.

(3253)

Task 1. Answer the following questions.

1. What was one of the questions discussed at the recent International
Congress of Mathematicians in Madrid?

2. How did Kurt Friedrichs define the difference between pure and ap-
plied mathematics? What example could prove his point?

3. What does applied mathematics require besides basic training in
mathematics?

4. Thanks to what circumstances was the famous Fayman-Kac formula

born? What is proved by that fact?

. What is the source of intuition?

6. Why is the joining of hands of all mathematicians necessary in deal-
ing with problems of mathematics?

|9,

Task 2. Translate the following sentences into English.

1. IlpuknagHas MaTeMaTUKa COCTOUT B MPUOIIKEHHOM PELICHUH TOY-
HBIX 3a]]ad4 ¥ TOYHOM pELICHUU NpHOmmKeHHbIX. 2. CyliecTByeT MHe-
HUE, YTO J0KA3aTeNbCTBA OYEHb BaXKHbI B TEOPETUUECKOW MaTEMaTHKE.
3. Tonpko B pe3yibTare IIyOOKOro IMOHMMaHMA NpoOJeM, BO3HHKAIO-
IIUX NPH PACCMOTPEHUM KOHKPETHOM TEMBI, y YeIOBEKa Pa3BUBACTCS
€ro TOHKO€ BOCIpHUATHE, U ¢ HUM, UHTyuus. 4. Te, kT0, 3aHUMAsChH
MPUKIAAHON MaTeMaTUKOM, PYKOBOJCTBYETCS WHTYULMEH, IOJKHBI
B TO K€ BpPEMs OCO3HAaBaTh HEOOXOANMOCTh JIOKA3aTENbCTB U UX BaX-
HOCTb.

Task 3. Read the following expressions, consulting the SUP-
PLEMENT.

1%; 0.12; 9.43.

2% +7x=0; 1095 -3=2:2x +3=+/20x+9; J2+11x2 =3 +x;

_ 1 [Nriw at —b* = a2 + b2
2\ R a?-b? '




log 7N = ZOLN;2sinacosB=sin(a+B)+sin(a7B);

J‘3 5x°

J‘\/id J-smxdx

7 COS 2x+1
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Grammar Revision

Grammar task 1. Find the passive constructions in Text A and

explain them.

Grammar task 2. Translate the following sentences into Russian

paying attention to the passive constructions.

1.
2.

|95)

— = O 0
—_ O

13.
14.
15.
16.

17.

The question of the laws of resistance in circuits may now be turned to.
Many materials now commonly used were not even thought of forty
years ago.

. This result was aimed at.
. Mathematics, astronomy and physics were the first sciences to get

organized and defined.

. The speed with which arithmetic operations are performed is affected

by a number of factors.

. Questions can be asked and answered, but unfortunately the ques-

tions asked and those answered are frequently not the same.

. These problems were being discussed by physicists for many years.
. The equipment was sent for.
. The force was acted upon.

Advantage was taken of this fact.

Use is being made of the new technique developed by the young
engineer.

. Care should be taken of the exact following the instructions.

This question was very important but not paid due attention to.

The weak points in the thesis were not taken notice of.

The young man left the city and was lost sight of.

Materials can be classed in three groups according to their electrical
properties — conductors, semiconductors and insulators.

The results of the Dubna physicist research work are made good use of
in such fields as biology, medicine, geology and science of metals.



18. An atom of any substance may be represented by a central core
having a positive charge and surrounded by orbiting electrons, each
having a negative charge.

19. Granules cannot be obtained from such metals.

20. The book was terribly bad; it was just a chance that it got published.

Supplementary reading tasks
Read and translate Text B without a dictionary
Text B

Why is the World Mathematical?

This reflection on the symmetries behind the laws of nature also tells us
why mathematics is so useful in practice. Mathematics is simply the
catalogue of all possible patterns. Some of those patterns are especially
attractive and are studied or used for decorative purposes; others are
patterns in time or in chains of logic. Some are described solely in ab-
stract terms, while others can be drawn on paper or carved in stone.
Viewed in this way, it is inevitable that the world is described by math-
ematics. We could not exist in a universe in which there was neither
pattern nor order. The description of that order (and all the other sorts
that we can imagine) is what we call mathematics. Yet, although the
fact that mathematics describes the world is not a mystery, the excep-
tional utility of mathematics is. It could have been that the patterns be-
hind the world were of such complexity that no simple algorithms could
approximate them. Such a universe would “be” mathematical, but we
would not find mathematics terribly useful. We could prove “existence”
theorems about what structures exist, but we would be unable to predict
the future using mathematics in the way that NASA’s mission control
does.

Seen in this light, we recognize that the great mystery about math-
ematics and the world is that such simple mathematics is so far-
reaching. Very simple patterns, described by mathematics that is easily
within our grasp, allow us to explain and understand a huge part of the
universe and the happenings within it.

(1520)



Read Text C and give a short summary.
Text C
Mathematics and Physics

The traditional view is that mathematics and physics are quite different.
Physics describes the universe and depends on experiment and observa-
tion. The particular laws that govern our universe — whether Newton’s
laws of motion or the Standard Model of particle physics — must be
determined empirically and then asserted like axioms that cannot be
logically proved, merely verified. Mathematics, in contrast, is somehow
independent of the universe. Results and theorems, such as the proper-
ties of the integers and real numbers, do not depend in any way on the
particular nature of reality in which we find ourselves. Mathematical
truths would be true in any universe. Yet both fields are similar. In
physics and indeed in science generally, scientists compress their ex-
perimental observations into scientific laws. They then show how their
observations can be deduced from these laws. In mathematics, too,
something like this happens — mathematicians compress their compu-
tational experiments into mathematical axioms, and they then show
how to deduce theorems from these axioms. If Hilbert had been right,
mathematics would be a closed system, without room for new ideas.
There would be a static, closed theory of everything for all of mathe-
matics, and this would be like a dictatorship. In fact, for mathematics to
progress you actually need new ideas and plenty of room for creativity.
It does not suffice to grind away, mechanically deducing all the possi-
ble consequences of a fixed number of basic principles. An open sys-
tem is much more preferable. Rigid, authoritarian ways of thinking are
ineffective. Another person who thought mathematics is like physics
was Imre Lakatos, who left Hungary in 1956 and later worked on phi-
losophy of science in England. There Lakatos came up with a great
word, “quasiempirical,” which means that even though there are no true
experiments that can be carried out in mathematics, something similar
does take place. For example, the Goldbach conjecture states that any
even number greater than 2 can be expressed as the sum of two prime
numbers. This conjecture was arrived at experimentally, by noting em-
pirically that it was true for every even number that anyone cared to ex-
amine. The conjecture has not yet been proved, but it has been verified

10



up to 1014. It appears that mathematics is quasiempirical. In other
words, it seems that mathematics is different from physics (which is
truly empirical) but perhaps not as different as most people think. It is a
matter of degree, of emphasis, not an absolute difference. After all,
mathematics and physics coevolved. Mathematicians should not isolate
themselves. They should not cut themselves off from rich sources of
new ideas.

(2712)

Read Text D and put your own questions to the text. Discuss the
questions with the group.

Text D
Revolution in Mathematics

Physical sciences all went through “revolutions”: wrenching transitions
in which methods changed radically and became much more powerful.
It is not widely realized, but there was a similar transition in mathemat-
ics between 1890 and 1930.

To a first approximation the method of science is “find an explana-
tion and test it thoroughly”, while modern core mathematics is “find an
explanation without rule violations”. The criteria for validity are radi-
cally different: science depends on comparison with external reality,
while mathematics is internal.

The conventional wisdom is that mathematics has always depended
on error-free logical argument, but this is not completely true. It is quite
easy to make mistakes with infinitesimals, infinite series, continuity,
differentiability, and so forth, and even possible to get erroneous con-
clusions about triangles in Euclidean geometry. When intuitive formu-
lations are used, there are no reliable rule-based ways to see these are
wrong, so in practice ambiguity and mistakes used to be resolved with
external criteria, including testing against accepted conclusions, feed-
back from authorities, and comparison with physical reality. In other
words, before the transition mathematics was to some degree scientific.

The breakthrough was the development of a system of rules and
procedures that really worked, in the sense that, if they are followed
very carefully, then arguments without rule violations give completely
reliable conclusions. It became possible, for instance, to see that some
intuitively outrageous things are nonetheless true. Weierstrass’s no-
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where-differentiable functions and Peano’s horrifying space-filling
curve were early examples, and we have seen much stranger things
since. There is no abstract reason that such a useful system of rules ex-
ists, and no assurance that we would find it. However, it does exist and,
after thousands of years of tinkering and under the pressure from sci-
ences for substantial progress, we did find it. Major components of the
new methods are:

Precise definitions: Old definitions usually described what things
are supposed to be and what they mean, and extraction of properties re-
lied to some degree on intuition and physical experience. Modern defi-
nitions are completely self-contained, and the only properties that can
be ascribed to an object are those that can be rigorously deduced from
the definition.

Logically complete proofs: Old proofs could include appeals to
physical intuition, authority (e.g. “Euler did this so it must be OK”),
and casual establishment of alternatives. Modern proofs require each
step to be carefully justified.

It took while to learn to use modern definitions, to see how to pack
wisdom and experience into a list of axioms, how to fine-tune them to
optimize their properties and how to see opportunities where a new def-
inition might organize a body of material.

Also it took while to learn using logically complete proofs. The
“official” description as a sequence of statements obtained by logical
operations, and so forth, is cumbersome and opaque, but ways were de-
veloped to compress and streamline proofs without losing reliability.

(3150)

Read Text E, translate it into Russian and render.
Text E
“Queen of Sciences”

Mathematics was coined the “queen of sciences” by the “prince of
mathematicians,” Carl Friedrich Gauss, one of the greatest mathemati-
cians of all time. Indeed, the name of Gauss is associated with essen-
tially all areas of mathematics, and in this respect, there is really no
clear boundary between “pure mathematics” and “applied mathemat-
ics.” To ensure financial independence, Gauss decided on a stable ca-
reer in astronomy, which is one of the oldest sciences and was perhaps

12



the most popular one during the eighteenth and nineteenth centuries. In
his study of celestial motion and orbits and a diversity of disciplines
later in his career, including (in chronicle order): geodesy, magnetism,
dioptrics, and actuarial science, Gauss has developed a vast volume of
mathematical methods and tools that are still instrumental to our current
study of applied mathematics.

During the twentieth century, with the exciting development of
quantum field theory, with the prosperity of the aviation industry, and
with the bullish activity in financial market trading, and so forth, the
sovereignty of the “queen of sciences” has turned her attention to the
theoretical development and numerical solutions of partial differential
equations (PDEs). Indeed, the non-relativistic modeling of quantum
mechanics is described by the Schrodinger equation; the fluid flow
formulation, as an extension of Newtonian physics by incorporating
motion and stress, is modeled by the Navier-Stokes equation; and op-
tion stock trading with minimum risk can be modeled by the Black-
Scholes equation. All of these equations are PDEs. In general, PDEs are
used to describe a wide variety of phenomena, including: heat diffu-
sion, sound wave propagation, electromagnetic wave radiation, vibra-
tion, electrostatics, electrodynamics, fluid flow, and elasticity, just to
name a few. For this reason, the theoretical and numerical development
of PDEs has been considered the core of applied mathematics, at least
in the academic environment.

(2002)

Read Text F and translate it into Russian.
Text F

Experimental Mathematics

Another area of similarity between mathematics and physics is experi-
mental mathematics: the discovery of new mathematical results by
looking at many examples using a computer. Whereas this approach is
not as persuasive as a short proof, it can be more convincing than a long
and extremely complicated proof, and for some purposes it is quite suf-
ficient.

In the past, this approach was defended with great vigor by both
George Polya and Lakatos, believers in heuristic reasoning and in the

13



quasi-empirical nature of mathematics. This methodology is also prac-
ticed and justified in Stephen Wolfram’s “A New Kind of Science”
(2002).

Extensive computer calculations can be extremely persuasive, but
do they render proof unnecessary? Yes and no. In fact, they provide a
different kind of evidence. In important situations, it seems doubtful
that both kinds of evidence are required, as proofs may be flawed, and
conversely computer searches may have the bad luck to stop just before
encountering a counterexample that disproves the conjectured result.
All these issues are intriguing but far from resolved. Now it is not clear
how serious incompleteness is. We do not know if incompleteness is
telling us that mathematics should be done somewhat differently. May-
be 50 years from now we will know the answer.

(1300)
Read and smile

Mathematics is made of 50 percent formulas, 50 percent proofs,
and 50 percent imagination.

“A mathematician is a device for turning coffee into theorems”
(P. Erdos) Addendum: American coffee is good for lemmas.



Unit 2

Texts:
A. What is the World Like?
B. Outcomes of the Laws of Nature
C. Complexity and Scientific Laws
D. Disorganized Complexities
E. On the Edge of Chaos
F. The Number Omega

Preliminary exercises

1. Read Text A and choose the relevant meaning of the following
words:
alternative, n — BBIOOp, BapHaHT, BO3MOXKHOCTb;
alternative, adj. — Apyro#, B3aMMOUCKITIOYAIOIIUH, TIepeMEHHbIH, 3Ha-
KOIIEPEMEHHBIN, YePE Ly FOLUICS
claim, n — yTBepaeHHe, 3a5BKa, 3asBJICHNE, TPEOOBAHHE;
claim, v — yTBepkaatb, 3asBJISITh, TPEOOBAThH

spring, n — Tpy>XWHA, TPHEDKOK, CKAYOK, pa3der, yIpyroctb, POIHUK,
UCTOYHUK;

spring, v — OTIYCKaTh MPYXWUHY, MPbITaTh, MOABIATHCS, OpbI3raTh,
HaOpoCHUThCS

regularity, # — 3aKOHOMEpPHOCTb, IPABWIBHOCTh, PETYJSIPHOCTD, PpaB-
HOMEPHOCTh

pattern, n — CTpyKTypa, oOpasel, cucrema, mpuMmep, cxema, Juarpam-
Ma, THIIOBOW BapHaHT, XapaKkTep, KapTHHa, 3aKOHOMEPHOCTH;

pattern, v — CTpyKTypHpOBaTh, JellaTh MO 00pasily, pacnoyiarath IO
cxeme, (hopMHPOBaTh (KapTHUHY, N300paKEHHE), CITy>KUTh 00pa3ioM

update, » — yTOYHEHHWe, YTOYHEHHBI BapuaHT, OOHOBIIEHUE, HOBEW-
mast “HQopMaIus, MOCISTHII BapUAHT, CBEXXHE HOBOCTH,

update, v — yTOYHSATH, BHOCUTh U3MEHEHUS, JIOTIOJHATH, HAPAIIUBATh,
OOHOBIISATH, TOBOJUTH /IO COBPEMEHHOI'O YPOBHS
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recurrence, n — BO3BpaT, PEKYpCHs, BO3BpAIllCHUE, TOBTOPEHHUE, MHO-
TOKPaTHOCTB, IEPUOANYHOCTD, IIUKIAYHOCTB;
recurrence, adj. — peKyppeHTHBIH, TOBTOPSIIOIIUIACS

uniquely, adv. — omHO3HAYHO, YHUKAIHHO, CIUHCTBEHHO, CIMHCTBEH-

HBIM 00pa3zoM

invariance, 7 — HEU3MEHHOCTb, HEU3MEHSEMOCTb, WHBAPUAHTHOCTb,
COXpaHeHHe, COXPAaHHOCTh, IIOCTOSIHCTBO

11. Find equivalent phrases in the right-hand column. Find them

in the text:
1) 3aKOHBI OJUHAKOBEI BE3/IE
2) KOMIUTIEKC MaTeMaTHYECKHX WH-
CTPYMEHTOB
3) uckaTh 3aKOHOMEPHOCTH B COOBI-
TUSAX
4) ompeneneHne 3aKOHA TATOTCHUS

5) BO3MOXHBIE 3aKOHOMEPHOCTH
6) HarpOMOKIEHUE CIIOKHBIX COOBI-
THI

7) 3aKOH MPUYXHBI U CIICACTBHS

8) caMblIif 3HAUATETHHBIN MPOTPECC
9) B IOATOCPOYHOI MEPCIIEKTHBE.

a) a mess of complex events
b) in the long run

c) the most significant ad-
vance

d) the laws were the same
everywhere

e) a battery of mathematical
tools

f) to look for patterns in the
facts

g) identification of the law of
gravitation

h) possible patterns

1) law of cause and effect

1II. Memorize the following basic vocabulary and terminology to

Text A:

simplicity — mpocTora
observation — HabmtOICHHE
regularity — 3aKOHOMEPHOCTh

law of gravitation — 3aKOH BCEMHPHOTO TATOTECHUS
to document — JTOKYMEHTHPOBaTbh, (PUKCHUPOBATH, TIOATBEPIUTD JOKY-

MCHTaMH

content — CyTb, OCHOBHOE COZIEpXaHHUE, 00BEM, BMECTUMOCTh, EMKOCTh
to be content — JOBOIBCTBOBATHCS, YAOBIECTBOPSITHCS

to predict — mporHO3UpPOBATH

likelihood — BeposTHOCTB, paBaOIIOI00ME
recurrence — MHOTOKPaTHOE IOBTOPEHHE, TOBTOPSIEMOCTh, PEKyp-

PEHTHOCTh

invariance — HWHBAPHUAHTHOCTh, HEU3MCHHOCTb, COXPAHHOCTbH
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Text A
What is the World Like?

Is the world simple or complicated? As with many things, it depends on
whom you ask, when you ask, and how seriously they take you. If you
should ask a particle physicist, you would soon be hearing how won-
derfully simple the universe appears to be. For the psychologist, the
economist, or the botanist, the world is a mess of complex events that
just seemed to win out over other alternatives in the long run. So who is
right? Is the world really simple, as the particle physicists claim, or is it
as complex as almost everyone else seems to think? Understanding the
question, why you got two different answers, and what the difference is
telling us about the world, is a key part of the story of science over the
past 350 years.

Our belief in the simplicity of nature springs from the observation
that there are regularities which we call “laws” of nature. The idea of
laws of nature has a long history. The most significant advance in our
understanding of the nature and consequences followed Newton’s iden-
tification of a law of gravitation in the late seventeenth century, and his
creation of a battery of mathematical tools with which to determine its
consequences.

Laws reflect the existence of patterns in nature. We might even de-
fine science as the search for those patterns. We observe and document
the world in all possible ways; but while this data-gathering is neces-
sary for science, it is not sufficient. We are not simply to acquire a rec-
ord of everything that has ever happened, like cosmic stamp collectors.
Instead, we look for patterns in the facts, and some of these patterns we
have come to call the laws of nature, while others have achieved only
the status of by-laws. Having found (or guessed — for there are no
rules at all about how you might find them) possible patterns, we use
them to predict what should happen if the pattern is also followed at all
times and in places where we have yet to look. Then we check if we are
right (there are strict rules about how you do this!). In this way, we can
update our candidate pattern and improve the likelihood that it explains
what we see. Sometimes likelihood gets so low that we say the proposal
is “falsified,” or so high that it is “confirmed” or “verified,” although
strictly speaking neither is ever possible with certainty. This is called
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the “scientific method”. For Newton and his contemporaries the laws of
motion were codifications into simple mathematical form of the habits
and recurrences of nature. They were idealistic: “bodies acted upon by
no forces will ...,” because there are no such bodies. They were laws of
cause and effect: they told you what happened if a force was applied.
The present state determined the future uniquely and completely.

Later, these laws of change were found to be equivalent to state-
ments that some given quantity was unchanging: the requirement that
the laws were the same everywhere in the Universe was equivalent to
the conservation of momentum; the requirement that they were found to
be the same at all times was equivalent to the conservation of energy;
and the requirement that they were found the same in every direction in
the Universe was equivalent to the conservation of angular momentum.
This way of looking at the world in terms of conserved quantities, or
invariances and unchanging patterns, would prove to be extremely
fruitful.

(3371

Task 1. Answer the following questions.

1. If you ask a particle physicist whether the world is simple or com-
plex, what answer will he give? Why do you think?

2. Who will not agree with the particle physicist?

3. What does our belief in the simplicity of nature come from?

4. What was the most significant advance in our understanding of na-
ture?

5. Data gathering may be considered the first step in finding a law of
nature. [s it sufficient for science? What must be done next?

6. Why could Newton’s laws of motion be called “idealistic”?

Task 2. Translate the following sentences into English.

1. Ecniu cipocuth usnka-saepuimka, NCUxXoaora, 3KOHOMUCTa Win 00o-
TaHUKA, SBJISAETCS JIM MUP MPOCTHIM WIIH CIOXHBIM, OTBETHI OYIYT CO-
BEPIIEHHO pa3HbIMU. 2. OTBET 3aBUCHUT OT TOTO, KOT'O BHI CIIPAIINBAETE,
KOTJIa BbI CIIPAIIMBAETE, U HACKOJIBKO CEPhE3HO OHM K BaM OTHOCSTCS.
3. Hac He ymoBieTBOpsieT MPOCTO MOJYYCHUE TMEPEUYHS KOTga-Iudo
MIPOM3OIIEAINHNX COOBITUN. 4. MBI HUIIleM 3aKOHOMEPHOCTH B COOBITHSIX,
W HEKOTOpBIE U3 ITHX 3aKOHOMEPHOCTEH MBI MPUBBHIKIM HAa3bIBaTh 3a-
KOHaMHU. 5. 3aKoHBl OTPaXalOT CYIIECTBOBAaHHE 3aKOHOMEPHOCTEH
B TIPUPOJIE.
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Task 3. Read the following expressions, consulting the SUP-
PLEMENT.

4%;0.63;7.21
3x2+7x=15;3% —g-5¢ +6=0; Y3a+7 —1=+6x-17;

2 2
b=\/(al_a) +2(a2_ “) ;a3+Z3 = g2 —ab+ b?;
a+

1nN:kﬂ;sina+sinB=2sin oa+p cos a_B,'
lge 2 2
1
1 2 -
ex

[2rtax; !ﬁdx; ! —dx

Grammar Revision

Grammar task 1. Find the infinitive construction in Text A and
explain them.
Grammar task 2. Translate the following sentences into Russian
paying attention to the infinitive constructions.
1. He appeared to have plenty of money, which was said to be gained
in the California goldfields.
2. Every feature seemed to have sharpened since he saw her last.
3. The house appeared to have been repaired recently.
4. 1 suppose Mr. Jelleby had been more talkative and lively once; but
he seemed to have exhausted long before I knew him.
For the last few days she seemed to talk to nobody but strange men.
6. I lack the will-power to do anything with my life, to better my posi-
tion by hard work.
7. It was the first time he had ever seen her weep.
I came to get someone to tell me the truth.
9. He looked at his watch, rang the bell, and ordered the vehicle to be
brought round immediately.
10. Young men of this class never do anything for themselves that they
can get other people do for them.

9]

*
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Read Text B and put your own questions to the text. Discuss the
questions with the group.

Text B
Outcomes of the Laws of Nature

The simplicity and economy of the laws and symmetries that govern
nature’s fundamental forces is not the end of the story. When we look
around us we do not observe the laws of nature; rather, we see the out-
comes of those laws. The distinction is crucial. Outcomes are much
more complicated that the laws that govern them because they do not
have to respect the symmetries displayed by the laws. By this subtle in-
terplay, it is possible to have a world which displays an unlimited num-
ber of complicated asymmetrical structures yet is governed by a few,
very simple, symmetrical laws. This is one of the secrets of the uni-
verse.

Suppose we balance a ball at the apex of a cone. If we release the
ball, then the law of gravitation will determine its subsequent motion.
Gravity has no preference for any particular direction in the universe; it
is entirely democratic in that respect. Yet, when we release the ball, it
will always fall in some particular direction, either because it was given
a little push in one direction, or as a result of quantum fluctuations
which do not permit an unstable equilibrium state to persist. So here, in
the outcome of the falling ball, the directional symmetry of the law of
gravity is broken. This teaches us why science is often so difficult.
When we observe the world, we see only the broken symmetries mani-
fested as the outcomes of the laws of nature; from them, we must work
backwards to unmask the hidden symmetries which characterize the
laws behind the appearances.

We can now understand the answers that we obtained from the dif-
ferent scientists we originally polled about the simplicity of the world.
The particle physicist works closest to the laws of nature themselves,
and so is especially impressed by their unity, simplicity, and symmetry.
But the biologist, the economist, or the meteorologist is occupied with
the study of the complex outcomes of the laws, rather than with the
laws themselves. As a result, it is the complexities of nature, rather than
her laws, that impress them most.

Until the late 1970s, physicists focused far more upon the study of
the laws, rather than the complex outcomes. This is not surprising. The
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study of the outcomes is a far more difficult problem that requires the
existence of powerful interactive computers with good graphics for its
full implementation. It is no coincidence that the study of complexity
and chaos in that world of outcomes has advanced hand in hand with
the growing power and availability of low-cost personal computers
since the late 1970s. It has created a new methodology of experimental
mathematics, dedicated to the simulation of complex phenomena, with
an array of diverse applications.

(2 709)

Read Text C, translate it into Russian and render.

Text C
Algorithmic Information Theory

My story begins in 1686 with Gottfried W. Leibniz’s philosophical es-
say “Discours de métaphysique” (Discourse on Metaphysics), in which
he discusses how one can distinguish between facts that can be de-
scribed by some law and those that are lawless, irregular facts. Leib-
niz’s very simple and profound idea appears in section VI of the Dis-
cours, in which he essentially states that a theory has to be simpler than
the data it explains, otherwise it does not explain anything. The concept
of a law becomes vacuous if arbitrarily high mathematical complexity
is permitted, because then one can always construct a law no matter
how random and patternless the data really are. Conversely, if the only
law that describes some data is an extremely complicated one, then the
data are actually lawless. Today the notions of complexity and simplici-
ty are put in precise quantitative terms by a modern branch of mathe-
matics called algorithmic information theory. Ordinary information
theory quantifies information by asking how many bits are needed to
encode the information. For example, it takes one bit to encode a single
yes/no answer. Algorithmic information, in contrast, is defined by ask-
ing what size computer program is necessary to generate the data. The
minimum number of bits — what size string of zeros and ones — need-
ed to store the program is called the algorithmic information content of
the data. Thus, the infinite sequence of numbers 1, 2, 3, . . . has very lit-
tle algorithmic information; a very short computer program can gener-
ate all those numbers. It does not matter how long the program must
take to do the computation or how much memory it must use — just the
length of the program in bits counts. (I gloss over the question of what

21



programming language is used to write the program — for a rigorous
definition, the language would have to be specified precisely. Different
programming languages would result in somewhat different values of
algorithmic information content.) To take another example, the number
pi, 3.14159. . ., also has only a little algorithmic information content,
because a relatively short algorithm can be programmed into a comput-
er to compute digit after digit. In contrast, a random number with
a mere million digits, say 1.341285. . . 64, has a much larger amount of
algorithmic information. As the number lacks a defining pattern, the
shortest program for outputting it will be about as long as the number
itself.

No smaller program can calculate that sequence of digits. In other
words, such digit streams are incompressible, they have no redundancy;
the best that one can do is transmit them directly. They are called irre-
ducible or algorithmically random.

How do such ideas relate to scientific laws and facts? The basic in-
sight is a software view of science: a scientific theory is like a computer
program that predicts our observations, the experimental data. Two
fundamental principles inform this viewpoint. First, as William of Oc-
cam noted, given two theories that explain the data, the simpler theory
is to be preferred (Occam’s razor). That is, the smallest program that
calculates the observations is the best theory. Second is Leibniz’s in-
sight, cast in modern terms — if a theory is the same size in bits as the
data it explains, then it is worthless, because even the most random of
data has a theory of that size. The simpler the theory is, the better you
understand something.

(3422)

Read and translate Text D into Russian.
Text D
Disorganized Complexities

Complexity, like crime, comes in organized and disorganized forms.
The disorganized form goes by the name of chaos and has proven to be
ubiquitous in nature. The standard folklore about chaotic systems is that
they are unpredictable. They lead to out-of-control dinosaur parks and
out-of-work meteorologists. However, it is important for us to appreci-
ate the nature of chaotic systems more fully than the Hollywood head-
lines do.
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Classical (that is, non-quantum mechanical) chaotic systems are
not in any sense intrinsically random or unpredictable. They merely
possess extreme sensitivity to ignorance. We are never going to get the
mathematical equations for weather prediction one hundred percent
correct — there is too much going on — so we will always end up be-
ing inaccurate to some extent in our predictions.

Another important feature of chaotic systems is that, although they
become unpredictable when you try to determine the future from a par-
ticular uncertain starting value, there may be a particular stable statisti-
cal spread of outcomes after a long time, regardless of how you started
out. The most important thing to appreciate about these stable statistical
distributions of events is that they often have very stable and predicta-
ble average behaviors. As a simple example, take a gas of moving mol-
ecules (their average speed of motion determines what we call the gas’s
“temperature”), and think of the individual molecules as little balls. The
motion of any single molecule is chaotic, because each time it bounces
off another molecule any uncertainty in its direction is amplified expo-
nentially. This is something you can check for yourself by observing
the collisions of marbles or snooker balls.

Gas molecules behave like a huge number of snooker balls bounc-
ing off each other and the denser walls of their container. One knows
from bitter experience that snooker exhibits sensitive dependence on in-
itial conditions: a slight miscue of the cue ball produces a big miss! Un-
like the snooker balls, the molecules won’t slow down and stop. Their
typical distance between collisions is about 200 times their radius. With
this value of d/r, the unpredictability grows 200-fold at each close mo-
lecular encounter. All the molecular motions are individually chaotic,
just like the snooker balls, but we still have simple rules like Boyle’s
Law, governing the pressure P, volume ¥, and temperature 7 — the av-
eraged properties — of a confined gas of molecules: PV/T = constant.
The lesson of this simple example is that chaotic systems can have sta-
ble, predictable, long-term, average behaviors. However, it can be diffi-
cult to predict when, because the mathematical conditions that are suf-
ficient to ensure it are often very difficult to prove. You usually just
have to explore numerically to discover whether the computation of
time averages converges towards a steady behavior in a nice way
or not.

(2901)
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Read Text E and give a short summary.
Text E
On the Edge of Chaos

The advent of small, inexpensive, powerful computers with good inter-
active graphics has enabled large, complex, and disordered situations to
be studied observationally — by looking at a computer monitor. Exper-
imental mathematics is a new tool. A computer can be programmed to
simulate the evolution of complicated systems, and their long-term be-
havior observed, studied, modified, and replayed. By these means, the
study of chaos and complexity has become a multidisciplinary subcul-
ture within science. The study of the traditional, exactly soluble prob-
lems of science has been augmented by a growing appreciation of the
vast complexity expected in situations where many competing influ-
ences are at work. Prime candidates are provided by systems that
evolve in their environment by natural selection, and in so doing modi-
fy those environments in complicated ways.

As intuition about the nuances of chaotic behavior has matured by
exposure to natural examples, novelties have emerged that give im-
portant hints about how disorder often develops from regularity. Chaos
and order have been found to coexist in a curious symbiosis. Imagine
a very large egg timer in which sand is falling, grain by grain, to create
a growing sand pile. The pile evolves under the force of gravity in an
erratic manner. Sandfalls of all sizes occur, and their effect is to main-
tain the overall gradient of the sand pile in a temporary equilibrium, al-
ways just on the verge of collapse. The pile steadily steepens until it
reaches a particular slope, and then gets no steeper. This self-sustaining
process was dubbed “self-organising criticality”. It is always about to
experience an avalanche of some size or another. The sequence of
events that maintains its state of large-scale order is a slow local build
of sand somewhere on the slope, then a sudden avalanche, followed by
another slow build up, a sudden avalanche, and so on. At first the infall-
ing grains affect a small area of the pile, but gradually their avalanching
effects increase to span the dimensions of the entire pile, as they must if
they are to organize it.

At a microscopic level, the fall of sand is chaotic, yet the result in
the presence of a force like gravity is large-scale organization. If there
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is nothing peculiar about the sand that renders avalanches of one size
more probable than all others, then the frequency with which ava-
lanches occur is proportional to some mathematical power of their size
(the avalanches are said to be “scale-free” processes). There are many
natural systems (like earthquakes) and man-made ones (like stock mar-
ket crashes) where a concatenation of local processes combines to
maintain a semblance of equilibrium in this way. Order develops on
a large scale through the combination of many independent, chaotic,
small-scale events that hover on the brink of instability. Complex adap-
tive systems thrive in the hinterland between the inflexibilities of de-
terminism and the vagaries of chaos. There, they get the best of both
worlds: out of chaos springs a wealth of alternatives for natural selec-
tion to sift through, while the rudder of determinism sets a clear average
course towards islands of stability.

Originally it was believed that the way in which the sandpile orga-
nized itself might be a paradigm for the development of all types of or-
ganized complexity. This was too optimistic. But it does provide clues
as to how many types of complex system organize themselves. The
avalanches of sand can represent extinctions of species in an ecological
balance, jams on a motorway traffic flow, the bankruptcies of business-
es in an economic system, earthquakes or volcanic eruptions in a model
of the pressure equilibrium of the Earth’s crust, and even the formation
of oxbow lakes by a meandering river. Bends in the river make the flow
faster there, which erodes the bank, leading to an oxbow lake forming.
After the lake forms, the river is left a little straighter. This process of
gradual buildup of curvature followed by sudden oxbow formation and
straightening is how a river on a flat plain “organizes” its meandering
shape.

At first, it was suggested that this route to self-organization might
be followed by all complex self-adaptive systems. That was far too op-
timistic: it is just one of many types of self-organization. Yet the nice
feature of these insights is that they show that it is still possible to make
important discoveries by observing the everyday things of life and ask-
ing the right questions. Sometimes complexity can be simple too.

(4757)
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Read and translate Text F without a dictionary
Text F
The Number Omega

The first step on the road to omega came in a famous paper published pre-
cisely 250 years after Leibniz’s essay. In a 1936 issue of the Proceedings
of the London Mathematical Society, Alan M. Turing began the computer
age by presenting a mathematical model of a simple, general-purpose, pro-
grammable digital computer. He then asked: “Can we determine whether
or not a computer program will ever halt?” This is Turing’s famous halting
problem. Of course, by running a program you can eventually discover that
it halts, if it halts. The problem, and it is an extremely fundamental one, is
to decide when to give up on a program that does not halt. A great many
special cases can be solved, but Turing showed that a general solution is
impossible. No algorithm, no mathematical theory, can ever tell us which
programs will halt and which will not.

The next step on the path to the number omega is to consider the
ensemble of all possible programs. Does a program chosen at random
ever halt? The probability of having that happen is my omega number.
First, I must specify how to pick a program at random. A program is
simply a series of bits, so flip a coin to determine the value of each bit.
How many bits long should the program be? Keep flipping the coin so
long as the computer is asking for another bit of input. Omega is just
the probability that the machine will eventually come to a halt when
supplied with a stream of random bits in this fashion. (The precise nu-
merical value of omega depends on the choice of computer program-
ming language, but omega’s surprising properties are not affected by
this choice. And once you have chosen a language, omega has a defi-
nite value, just like pi or the number 3.) Being a probability, omega has
to be greater than 0 and less than 1, because some programs halt and
some do not. Imagine writing omega out in binary. You would get
something like 0.1110100.... These bits after the decimal point form an
irreducible stream of bits. They are our irreducible mathematical facts
(each fact being whether the bitisa O ora 1).

Omega can be defined as an infinite sum, and each N-bit program
that halts contributes precisely 1/2N to the sum. In other words, each
N-bit program that halts adds a 1 to the Nth bit in the binary expansion
of omega. Add up all the bits for all programs that halt, and you would
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get the precise value of omega. This description may make it sound like
you can calculate omega accurately, just as if it were the square root of
2 or the number pi. Not so — omega is perfectly well defined and it is a
specific number, but it is impossible to compute in its entirety.

(2628)

Read and smile

Mathematics is the art of giving the same name to different things. —
J. H. Poincare.

An engineer thinks that his equations are an approximation to reality.
A physicist thinks reality is an approximation to his equations. A math-
ematician doesn't care.

“Mathematicians are like Frenchmen: whatever you say to them, they
translate it into their own language, and forthwith it means something
entirely different.” Goethe.



Unit 3

Texts:

. Some Mathematical Tools for Information Processing
Algebraic Equations. Construction of Roots

. The Unreasonable Effectiveness of Mathematics in Science
and Engineering

. Accurate Reconstruction of Discontinuous Functions
Function Approximation and Functional Optimization
Mathematics on the Web

omg QW

Preliminary exercises

I. Read Text A and choose the relevant meaning of the following

words:

face, n — nuI0, BRIpAKEHHUE JIMIA, BHCIIHUN BU, HArJIOCTh, HAXajlb-
CTBO, TIOBEPXHOCTb, BHEIIHSAS CTOPOHA, T'PaHb, JHIIEBAas CTOPOHA,
nudepOat, rpaHb, OOTUIIOBKA;

face, v — ObITh OOpaIllEeHHBIM K ..., CMOTPETh B JIMIIO, CTAJIKUBATHCS,
OOJIMIOBBIBATH, MOJIUPOBATH, CKOMAaH/I0BATh TOBOPOT

volume, n — TOM, KHUra, 00bEM, KOJUYECTBO, Macca (BEIIeCTBa), M-
KOCTh, BMECTUTEJIBHOCTD, CHJIa, HHTCHCUBHOCTD, IIOJHOTA, TPOM-
KOCTh

impact, n — yzaap, TOITYOK, CTOJIKHOBEHHUE, UMITYJIbC;
impact, v — IJIOTHO C)KUMATh YIUIOTHATH, IPOYHO YKPEIUIATh, yIapATh

solution, # — pacTBOpeHHe, pacIlyCKaHHe, PacTBOP, PACTBOPEHHOE CO-
CTOSIHHE, pelIeHne, OOBsICHEHNE, paspelieHue (comHenuil), OKOH-
yanue (bonesHu), UCTIONHEeHUE (00s13aTeILCTRA)

instill, v — mocreneHHo BHyIIaTh, MPUBHUBATEH (¥)y8CcME0), BHYUIATH,
BOCTIUTHIBATh, UCTIO/IBOJIb YUUTh, BBOAUTH MaJIbIMH J03aMH

concept, n — MOHsTHE, UAes, 00Iee NpeAcTaBIeHIe, KOHLIETINS

core, n — CEpALEBUHA, S]Ip0, BHYTPEHHOCTb, CYTh, CYIIHOCTb, CTEp-
XKEHb, XXuja (kabens), akTUBHASI 30HA PEaKTOpa, OCHOBHAs 4acTb,
OCHOBHasl Hjes
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approach, n — npubIMKeHre, NPUXOA, HACTYIUIEHHUE, [TOJICTYIIbI, HO-
XOJI, METOJ, 110/1a4a, N0BOJ, pa3der

approach, v — MOJX0IUTbh, MPUOIUKATHCS, OIU3UTHCS, TPAHUYIHTH, 00-
pamarscs;

introduce, v — BBOAWTH, BCTABNIATH, IOMEIIATh,, BIIYCKaTh, yCTaHABIIH-
BaTbh, yUpeXIaTb, BHOCUTh Ha PACCMOTPEHHE, NPEACTaBIATh, 3HA-
KOMMUTb, 03HAKOMJIATh, [IPUCTYIIaTh, HAYMHATH, BHEIPSTh

II. Read Text A and find equivalent phrases in the right-hand
column. Find them in the text:
1) annpokcumaiust 1o Meromy  a) notion of “frequency”
HAUMCHBIIIUX KBaJIPaTOB
2) OCHOBHas 4acTh MareMaTudecko- b) multiresolution analysis
T0 UHCTPYMEHTapus

3) 4acCTOTHBIN METOJ c) trigonometric series repre-
sentations

4) y3K0€ MECTO d) least-squares approxima-
tion

5) mporpeccuBHas nepegava e) core of the mathematical
toolbox

6) monsitue "4acToTHOCTH" f) frequency approach

7) mpenctaBieHue B BHUAE TPUroHO-  g) bottleneck
METPHUYECKOTOo psisia
8) MHOroMacImTabHbII aHaIH3 h) progressive transmission

1II. Memorize the following basic vocabulary and terminology to

Text A:

exponential growth — 3KCIIOHEHIIMATBHBIH POCT, CTENIEHHOW POCT

innovative solution — mepcrneKTUBHOE pellleHre, HHHOBAIMOHHOE pe-
LICHHE

high-dimensional space — MHOroMepHOE MPOCTPAHCTBO

partial differential equation — auddepennuansHoe ypaBHEHHE B 4acT-
HBIX TIPOU3BOJIHBIX

least-squares approximation — npuOIMIKEHHE 10 METOY HAUMEHBIINX
KBaJpaToB

data dimensionality reduction — moHmKeHIE pa3MEPHOCTH JaHHBIX

data compression — yIuioTHEHHE TaHHBIX

discrete Fourier transform — anckperHoe npeobpazoBanue Oypbe

fast Fourier transform — OvicTpoe npeoOpazoBanue Oypbe

wavelet — BeHBIIET, BCILUIECK
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multi-scale processing — MHOTOMacmTabHas 00paboTKa
multiresolution analysis — MHOTOMacCIITaOHBIN aHATN3

strong background — oOmupHEIi ONBIT, XOpoIIasi MOArOTOBKA
principal component analysis — MeTOJI TJIaBHBIX KOMIIOHEHT

Text A
Some Mathematical Tools for Information Processing

Over the past decade, we have been facing a rapidly increasing volume
of “information” contents to be processed and understood. The trend of
exponential growth of easily accessible information is certainly going
to continue well into the twenty-first century, and the bottleneck created
by this information explosion will definitely require innovative solu-
tions from the scientific and engineering communities, particularly
those technologists with better understanding of, and strong background
in, applied mathematics. In this regard, the “queen of sciences” must
extend her influence and impact by providing innovative theory, meth-
ods, and algorithms to virtually every discipline, far beyond sciences
and engineering, for processing, transmitting, receiving, understanding,
and visualizing data sets, which could be very large or live in some
high-dimensional space.

Of course the basic mathematical tools, such as partial differential
equations (PDE) methods and least-squares approximation introduced
by Gauss, are always among the core of the mathematical toolbox for
applied mathematics. But other innovations and methods must be inte-
grated in this toolbox as well. Linear algebra is extended to “linear
analysis” with applications to principal component analysis (PCA) and
data dimensionality reduction (DDR). For data compression, the notion
of entropy is introduced to quantify coding efficiency. One of the most
essential ideas is the notion of “frequency” of the data information.
A contemporary of Gauss, by the name of Joseph Fourier, instilled this
important concept to our study of physical phenomena by his innova-
tion of trigonometric series representations, along with powerful math-
ematical theory and methods, to significantly expand the core of the
toolbox for applied mathematics. Discrete Fourier transform (DFT) fol-
lowed by an efficient computational algorithm, called fast Fourier
transform (FFT), as well as a real-valued version of the DFT, called
discrete cosine transform (DCT) are considered, with application to ex-
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tracting frequency content of the given discrete data set that facilitates
reduction of the entropy and thus significant improvement of the coding
efficiency. DFT can be viewed as a discrete version of the Fourier se-
ries. The integral version of the sequence of Fourier coefficients is
called the Fourier transform (FT). Another important idea is the “multi-
scale” structure of data sets. Less than three decades ago, with the birth
of another exciting mathematical subject, called “wavelets,” the data set
of information can be put in the wavelet domain for multi-scale pro-
cessing as well.

Multi-scale data analysis is introduced and compared with the Fou-
rier frequency approach, and the architecture of multiresolution analysis
(MRA) is applied to the construction of wavelets and formulation of the
multi-scale wavelet decomposition and reconstruction algorithms.

(2 916)

Task 1. Answer the following questions.
Why are the new methods of information processing required now?
What is the role of mathematics in this regard?
What is the core of the mathematical toolbox for applied mathematics?
What is the concept of Joseph Fourier?
What new methods are applied for information processing?

Task 2. Translate the following sentences into English.

1. M3BecTHO, YTO B ABaAlIATh NMEPBOM Beke 00beM MH(GOpPMAIUH, KOTO-
pyr HeobOxomauMo 00paboTath, OyleT CYIIECTBEHHO BO3pacTaTh.
2. CtyzentaM HEOOXOAMMO M3YUYHTh OCHOBBI TEOPHM M METOIBI NPH-
KJIATHOW MaTeMaTHKH, IPHMEHSIEMBIC Il 00paboTKH WH(OpPMAIIUH.
3. CoBpemennuk ["aycca, [Ixxo3ed @ypre, u3BecTeH CBOUMH padoTamMu
mo Teopun psAnoB. 4. Jns KonmmuecTBEeHHOH ONEeHKH 3(PPEeKTHBHOCTH
KOJIMPOBAHHSI BBOAMTCS MOHATHE SHTponuu. 5. Cuuraercs, 4To ypas-
HEHHSI B YaCTHBIX MPOU3BOJHBIX — 3TO OJUH M3 OCHOBHBIX MaTeMaTH-
YEeCKUX WHCTPYMEHTOB.

Task 3. Read the following expressions, consulting the SUP-

PLEMENT.

A

2% ; 0.28; 16.27

4(12*20(1225; 7a+1+62:3a; va4a+3 +Za:1;azé/ﬁ+%/1;
2 _ 2
a’* —2ab+b —a_b:
a—>b
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(b—cz) -2b

log N"=m log N ; a = 18; sin (a0 + B) = sin a cosp +

cos a sin f3;

T

I\/az —x? dx ;j‘(x3 - x2)dx; jtgzdx.
0 0

Grammar Revision: Suffix “-ing”

Grammar task 1. Find the words with suffix “-ing” in Text A
and explain them.

Grammar task 2. Translate the following sentences into Russian
paying attention to the words with suffix “-ing”.

1. A new technique having been worked out, the yields rose.

2. Other theories having so far proved inadequate, dynamo theories of
the origin of solar fields are regarded as the most promising.

3. All rock species yet tested are somewhat radioactive, the radioactivi-
ty being accompanied by the evolution of heat.

4. They took all the measurements during actual operation of the ma-
chine,this being the usual practice in those days.

5. If the savings in operating costs is to be fully realized, a high stand-
ard of reliability is necessary.

6. Up to present time, several writers have succeeded in finding exact
solutions of the fundamental differential equations in certain particu-
lar cases.

7. Life is a matter of making wise choices — of knowing when to draw
the line.

8. The method as developed by W.R. Evens is indicating the location
of roots of the characteristic equation.

9. Objectives may involve either getting something one does not have
or giving up none or as little as possible of something one does
have.

10. Never having encountered friends to drop in simultaneously, she

was almost totally alone.
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Read Text B and give a short summary.
Text B
Algebraic Equations. Construction of Roots

Decartes first states (without proof) that maximum number of roots that
an equation “can have” is equal to its “dimension” (degree). When the
total number of “true” (positive) and “false” (negative) roots is less than
the dimension, one can according to Decartes, artificially add “imagi-
nary” roots, a naive term coined by him but not defined. He also proves
that for a polynomial P to be divisible by (X-a) it is necessary and suf-
ficient that P(a) be zero. He then uses his indeterminate coefficients to
describe the division of a polynomial by (X-a). So it was important for
him to know at least one root. For an equation with rational coeffi-
cients, he studies the rational roots if any.

Decartes was also interested in the number of real roots, and as-
serted without proof that the maximum number of positive roots of an
equation is equal to the number of alternations of the sings “+” and “-*
between consecutive nonzero coefficients, while the maximum number
of negative roots is equal to the number of times the signs do not alter-
nate in the same sequence. This is the celebrated “rule of signs”, which
earned unfounded criticism for Decartes. The result was proved in the
eighteenth century, in particular by de Gua and Segner, and led to the
“final” theorem of Sturm.

The utility of solving algebraic equations arose from Pappus’s
problem. Constructing the roots geometrically was a consequence of
Decartes’s constructivist conception of knowledge. By intersecting
a circle and a parabola (auxiliary curves), Decartes could solve the tri-
section of the angle and the duplication of the cube (two ancient prob-
lems leading to cubic equations) and, from there, general equations of
degree 3 and 4. For higher degrees, Decartes introduced more compli-
cated algebraic auxiliary curves, including a specific cubic one. In
modern terms, the method regarded an algebraic equation H(x) = 0 as
the resultant of eliminating y between F(x, y) = 0 and G(x, y) = 0. To
construct the solutions of H(x) = 0, it suffices to make a suitable choice
of F and G and then to study graphically the abscissa of the points of
intersection of the curves for F =0 and G = 0, the skill of the geometer
lying in the “most simple” choice of F and G.

(2212)
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Read Text C and put your own questions to the text. Discuss the
questions with the group.

Text C

The Unreasonable Effectiveness of Mathematics
in Science and Engineering

The remarkable efficiency of mathematics in predicting the behavior of
physical systems has fascinated many scientists.

Einstein is said to have remarked that “The most incomprehensible
thing about the universe is that it is comprehensible”. This observation
was elaborated by Eugene Wigner in his famous paper in Pure Mathe-
matics entitled “The Unreasonable Effectiveness of Mathematics in the
Natural Sciences”.

The theme was further developed in “The Unreasonable Effective-
ness of Mathematics” by R. W. Hamming, which considered the predic-
tive, as well as descriptive powers, of mathematics in relation to engi-
neering.

Two surprising conclusions appear from these papers:

(1) Although it is a product of the human mind, mathematics is also
involved in some strange metaphysical way at the deepest levels of
physical existence. To quote Wigner:

“The miracle of the appropriateness of the language of mathemat-
ics for the formulation of the laws of physics is a wonderful gift which
we neither understand nor deserve. We should be grateful for it and
hope that it will remain valid in future research and that it will extend,
for better or for worse, to our pleasure, even though perhaps also to our
bafflement, to wide branches of learning”.

(i1) There is no Darwinian explanation for the presence of mathe-
matical abilities within the mind. The ability to understand physics
could not have arisen by evolution. Although our bodies may well be
the product of random mutation and selection all the way from amoeba
to man, our minds have some “unevolved” dimension. To quote Ham-
ming:

“But it is hard for me to see how simple Darwinian survival of the
fittest would select for the ability to do the long chains that mathemat-
ics and science seem to require”.

“If you pick 4,000 years for the age of science, generally, then you
get an upper bound of 200 generations. Considering the effects of evo-
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lution we are looking for via selection of small chance variations, it
does not seem to me that evolution can explain more than a small part
of the unreasonable effectiveness of mathematics”.

Or Wigner again: “Certainly it is hard to believe that our reasoning
power was brought, by Darwin's process of natural selection, to the per-
fection which it seems to possess”.

So we are left with something of a mystery. According to the mate-
rialist worldview, the mind (including mathematicians' minds) is an ep-
iphenomenon of matter which has evolved solely to ensure the survival
of the selfish genes which code for it. So why should this “top-level”
phenomenon have such intimate access to the “bottom level” phenome-
na such as quantum physics? After all, the two levels are supposedly
separated by less well-understood (in some cases) explanatory layers
such as evolutionary psychology, neurology, cell biology, genetics, mo-
lecular biology, and chemistry.

(2829)

Read Text D, translate it into Russian and render.
Text D
Accurate Reconstruction of Discontinuous Functions

Approximation of smooth functions by Fourier series or by truncated
orthogonal polynomial expansions in general is known to be exponen-
tially convergent and highly accurate. For functions with singularities,
however, convergence of a partial sum of orthogonal series is adversely
affected in the area over which the singularities occur, a problem which
has come to be known as the Gibbs phenomenon. This phenomenon
manifests in an oscillatory behavior at the vicinity of the jumps and
thus presents an obstruction in the reconstruction of a discontinuous
function. An exposition on the nature of the Gibbs phenomenon and
some remediation schemes to counter its effect can be found. A class of
techniques aimed at resolving the Gibbs phenomenon comprises Padé-
type approximations. These methods extend the standard Padé approx-
imation by making use of orthogonal polynomials as basis in lieu of the
canonical basis with which the numerator and denominator of a Padé
approximant are expanded. A Padé-type approximant enjoys the ad-
vantage of utilizing rational functions, which are broader than polyno-
mials and can have singularities, and hence there is a stronger likeli-
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hood that it will capture the singularities of the function being approxi-
mated. Some Padé-based methods work without requiring information
about the jump locations. However, locating jump discontinuities can
become a relevant issue when the actual function is not explicitly
known. In many cases, for instance, involving spectral approximations
of non smooth solutions to some partial differential equations, the solu-
tion comes in the form of computational data that are contaminated by
Gibbs phenomenon. As these data are noisy, the standard procedure is
to postprocess them to correct the phenomenon. One way this can be
done is to use Padé-type approximation. This Padé postprocessing ap-
proach, however, may turn out to be less successful unless fed with
some information about the possible jump positions which can be ad-
vantageous for its effective implementation. As computational data may
not show explicitly the existence and whereabouts of possible jumps, to
somehow locate them can become imperative. A study by Driscoll and
Fornberg reveals just how significant the knowledge of the jump loca-
tions can be in correcting the Gibbs phenomenon. Realizing that the
poles available in a rational approximant do not intrinsically and ade-
quately reproduce the jump behaviors of a discontinuous functions,
they devised an approach that incorporates the jump locations into the
approximation process.

(2567)

Read and translate Text E into Russian.
Text E
Function Approximation and Functional Optimization

In functional optimization problems, also known as infinite program-
ming problems, functionals have to be minimized with respect to func-
tions belonging to subsets of function spaces. Function-approximation
problems, the classical problems of the calculus of variations and, more
generally, all optimization tasks in which one has to find a function that
is optimal in a sense specified by a cost functional belong to this family
of problems. Such functions may express, for example, the routing
strategies in communication networks, the decision functions in optimal
control problems and economic ones. Experience has shown that opti-
mization of functionals over admissible sets of functions made up of
linear combinations of relatively few basis functions with a simple
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structure and depending nonlinearly on a set of “inner” parameters
(e.g., feed forward neural networks with one hidden layer and linear
output activation units) often provides surprisingly good suboptimal so-
lutions. In such approximation schemes, each function depends on both
external parameters (the coefficients of the linear combination) and in-
ner parameters (the ones inside the basis functions). These are examples
of variable-basis approximators since the basis functions are not fixed
but their choice depends on the one of the inner parameters. In contrast,
classical approximation schemes (such as the Ritz method in the calcu-
lus of variations) do not use inner parameters but employ fixed basis
functions, and the corresponding approximators exhibit only a linear
dependence on the external parameters. Then, they are called fixed-
basis or linear approximators. Certain variable-basis approximators can
be applied to obtain approximate solutions to functional optimization
problems. This technique was later formalized as the extended Ritz
method (ERIM) and was motivated by the innovative and successful
application of feed forward neural networks in the late 80 s. The basic
motivation to search for suboptimal solutions of these forms is quite in-
tuitive: when the number of basis functions becomes sufficiently large,
the convergence of the sequence of suboptimal solutions to an optimal
one may be ensured by suitable properties of the set of basis functions,
the admissible set of functions, and the functional to be optimized.
Computational feasibility requirements (i.e., memory occupancy and
time needed to find sufficiently good values for the parameters) make it
crucial to estimate the minimum number of computational units needed
by an approximator to guarantee that suboptimal solutions are “suffi-
ciently close” to an optimal one. Such a number plays the role of “mod-
el complexity” of the approximator and can be studied with tools from
linear and nonlinear approximation theory. As compared to fixed-basis
approximators, in variable-basis ones the nonlinearity of the parametri-
zation of the variable basis functions may cause the loss of useful prop-
erties of best approximation operators, such as uniqueness, homogenei-
ty, and continuity, but may allow improved rates of approximation or
approximate optimization. Then, to justify the use of variable-basis
schemes instead of fixed-basis ones, it is crucial to investigate families
of function-approximation and functional optimization problems for
which, for a given desired accuracy, variable-basis schemes require
a smaller number of computational units than fixed-basis ones.

(3423)
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Read and translate Text F without a dictionary.
Text F
Mathematics on the Web

Over the past several years, a project has been quietly evolving that has
important implications for those interested in using mathematical nota-
tion within webpages in a way that not only displays that mathematics
beautifully but allows it to interact with other applications and envi-
ronments. That project is MathJax, and it is an attempt to provide a uni-
versal, industrial-strength, math-on-the-web solution that is standards-
based and applicable. Current users include publishers of large-scale
scientific websites, bloggers and social networkers, users of course-
management systems, and individual faculty members who just want to
post their homework assignments easily online.

MathJax is an open-source project, drawing on the talents of a va-
riety of individuals. Anyone who has tried to include mathematical no-
tation in a webpage knows that this is not an easy task. The traditional
solution is to use images of the equations and link those into the page to
represent the mathematics. This is a cumbersome approach that has
a number of drawbacks (it is hard to get the images to match the sur-
rounding text, they don’t scale or print well, they cannot be easily cop-
ied, and so on). The Mathematical Markup Language (MathML) was
intended to solve this problem, but for a variety of reasons, more than a
decade after its specification was released, most of the major browsers
still don’t support it. The MathJax project plugs the gap left by a lack of
browser support for MathML, making it possible for mathematicians —
and the scientific community at large — finally to take advantage of the
MathML standard and all it implies.

MathJax is being developed as a platform for mathematics in
webpages that works across all the major browsers (including mobile
devices such as the iPad, iPhone, and Android phones). It allows au-
thors to write their equations using several formats, including MathML
and TEX, and displays the results using MathML in those browsers that
support it.

MathJax does not require the viewer to download any software
(though it will take advantage of certain locally installed fonts when
they are present), and since it uses actual fonts, its output scales and
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prints better than math presented as images. Because the pages include
the original TEX or MathML markup, search engines can index the
mathematics within them. Since there are no images to create, the
mathematics on the page can be dynamically generated and can include
links and other interactive content.

Read and smile

I do not think — therefore I am not.
Old mathematicians never die; they just lose some of their functions.

Classification of mathematical problems as linear and nonlinear is like
classification of the Universe as bananas and non-bananas.
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SUPPLEMENT

Mathematical Symbols and Operations

x — summation

dx — differential of x

d_y — derivative of y with respect to x

dx

oy . L .

6_ — partial derivative of y with respect to x

X

Sx) — function of x

lim — limit

}clgslf (x) — limit f{x) as x tends to 5

logsa — logarithm of « to the base 5

lg — decimal logarithm

In — logarithm natural

,f — integral of

J. f (x )dx — integral of a function of x over dx

I f (x)dx — integral of a function of x over dx between limits # and m

n

sin — sine

cos — cosine

tan, tg — tangent

cjt, ctg — cotangent

ADDITION — CJIOKEHHUE

Add — [Mpu6aBUTH, CKIABIBATD
Added — Cnaraemoe
Item — Cnaraemoe
Sum — CymMmMma, CyMMHUPOBAaTh
Summand — Cnaraemoe
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Total — CymMmMma, UTor, LeNbld, NOJBOAUTH UTOT

Quantity — KonunuectBo, BenuurHa
Unknown — HenzsectHoe
Equality — PaBencTBO

Example:a+b=c
Uuraercs, kak: a + b equals ¢; a + b is equal to ¢; a + b makes c;
atbisc.

SUBTRACTION — BBIYUTAHHUE

Subtract — Breruurars

Less — Bes, Munyc, 3a BerueTOM
Minuend — YMeHbI1aeMoe
Subtracted — Brranraemoe
Difference — PasHocTb

Negative — OTpuLaTenbHblil

Example: a-b =c¢
Uuraercs, kak: a — b equals ¢; a— b is equal to ¢; b from a leaves c;
a diminished by b is c.

MULTIPLICATION — YMHOKEHHE

Multiply — YMHOXUTh
Multiplicand — MHuoxumMoe
Multiplier — MHOXHUTEIb
Factor — MHOXHuTENb, KOAPPHUIUEHT
Product — IIpousBeneHue
Examples:

1 x 1 =1 Ywuraercs, Kak: once one is one

2 x 2 =4 Yuraercs, Kak: twice two is four

3 x 3 =9 UYnuraercs, kak: three times three is nine

a x b = ¢ Yuraercs, xak: a (multiplied) by b equals c.

DIVISION — JEJIEHUE

Divide — Jemuth
Divided — Jemumoe
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Divisor — Jlenurens

Quotient — YacTHOE, OTHOIIIECHUE

Reminder — OcraTox
Examples:
a:b=c Uwuraercs, kak: a divided by b is equal to c.
a+b  c+d

5 y, Yuraetcs, Kak: a plus b over a minus b is equal to ¢
a-— c—

plus d over ¢ minus d.

FRACTIONS — 1POBH

Common fractions — npoctbie 1pooun

Numerator — Yucnourens
Denominator — 3HaMeHarenb
Integer — Ilenoe uucmno
Cardinal number — KonnyecTBeHHOE YHCIUTEIBHOE
Ordinal number — ITopsiakoBOE YUCTUTETHEHOE
Nought — Houb (B MaTeMaTHYECKUX BBIPAIKEHUSIX )
Zero — Hoxnp (Ha mkanax)
Examples:

E Yutaercs, kak: one half, a half
2
Z Yuraercs, kak: two fourth
5

2
7 Yuraercs, kak: five and two seventh

Decimal fractions

B Aarmmm m AMepuke 3HaKU NECATHUYHBIX APOOEH OTHEIAIOT TOU-
Koit — point. Kaxxnast nudpa auraercs ornensro. Hoip untaercs mro-
ObIM H3 Tpex crmocoOoB: Homb Imenmsix MOXHO COBCEM HE YWTaTh,
a TOJILKO YUTaTh “‘point™.

Examples:

0.2  Ywuraercs, xak: O point two; point two; zero point two;

nought point two.
34.86 UYwmraercs, kak: thirty four point eight six.
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INVOLUTION — BO3BEJIEHUE B CTEIIEHb

Power —

Base —

Raise to the power —
Exponent —
Square —
Cube —

Even —

Even form —
Odd —

0Odd form —
Examples:
52

-5

Crerens, IoKa3aTelb CTCIICHU
OcHoBaHue

Bo3BoauTh B cTeneHn
IToxazaTens

Kganpar, Bo3BOAUTH B KBajpaT
Ky6, Bo3BOAHTE B KYO

YerHbBIN

YeTHas cTENEHb

HeueTnpiit

HeueTHas crernens

Uuraercs, kak: five squared; five square; five raised to the
second power; five to the power two; the second power of five.

x> UYwraercs, kak: x to the minus fifth (power)

7

y'  Uwraercs, kak: y to the seventh (power)

EVOLUTION — U3BJIEYHEHHUE KOPHA

Root — Kopenn
Extract the root of (out of) —  M3Biieus kOpeHb U3
Index — [Toxa3zarenp
Index laws — [IpaBunia nelicTBU ¢ MOKa3aTeIIMU
Indices — [oxazaTenu
Radical sign — 3HaK KOpHS
Examples:

J9 =3 Uwuraercs, kak: the square root of nine is three.

UYuraercs, kak: the fifth root out of a to the power seven.

PROPORTION — ITPOIIOPIUA

Term —
Expression —
Extremes —
Means —
Mean —
Proportional —

44

Wiren

Bripaxxenue

Kpaiinue unensl nponopuuu
CpenHue 4ieHbl IPOIOpLUT
Cpennuii, cpeHee 3HaUCHHE

IIponopiiMOHaAIBbHBIN, YieH MPONOPIUU



Directly — [Ipsimo, HemoCpeICTBEHHO

Inversely — Ob6partHO
Vary — MensTeca
Vary directly (inversely) — Menstbcs mpsiMo (0OpaTHO) TMpoTIOp-
[IHOHAIBEHO
Constant — [locrosHHas BeIMYMHA, KOHCTaHTa
Examples:
a:b=c:d UYwuraercs, kak: aisto b ascistod.
x=ky Uwuraetcs, kak: x varies directly to y, x is directly
proportional to y.
x= k Yuraercs, kak: x varies inversely to y; x is inversely
Y

proportional to y.

EQUATION — YPABHEHUE

Formula — dopmyra

Formulae, formulas —  ®opmyisr

Algebraic(al) — Anrebpandeckuit

Value — Bennuunna, 3HayeHme

Identity — ToxmecTBo
Examples:

(a + b)(@a—b)=da*—b* Yuraercs, kax: the product of the sum and
difference of a and b is equal to the differ-
ence of their squares.

EXAMPLES OF READING FORMULAS

2+x+ 4 +x*=10 Yuraeres, Kak: two plus x plus the square
root (out) of four plus x squared is equal ten

v =u~/sin’*i —cos*i =u YUwuraercs, Kak: v is equal to u square root
out of sine square i minus cosine square i
is equal to u

mmn _ n

am Uwuraercs, kak: a to the m/n —th power is
equal to the n-th root of the a to m-th power
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Uwuraercs, kak: integral of dx over (divided

a*—x?
by) the square root out of @ square minus x
square
b
j f(x)dx Ynraercs, kak: the integral of f'of x over

dx from a to b.
1 11
- 2 .
J.\/; dx = Ix2 dx=F(1)-F(0)= 3 UYuraercs, kak: the integral
0 0
of square root of x over dx
on the interval [0, 1] is equal
to the integral of x to the po-
wer one second over dx is
equal to function of 1 minus
function of zero is equal to
two thirds.

logﬂ = logN, — loghV, Yuraercs, kak: logarithm of N first over
2
N second is equal to logarithm of N first

minus logarithm of N second.
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